Skip to Main Content
Sign In
Visit Apply Give

News Explaining the Nobels

Image Picker for Section 0
Faculty experts discuss 2017's prize-winning work

​Participating in the Nobel Symposium are, from left, Juan Perilla, Jeremy Tobacman, Michael Moore, College of Arts and Sciences Deputy Dean and symposium organizer Doug Doren, Veronique Petit, Matthew Weinert and Alex McKee.

Whether you’re jet-lagged from flying across time zones, worried about the world’s prospects for nuclear war or wondering why it’s so hard to save for retirement, this year’s Nobel Prize-winning work might provide some understanding.

And at the University of Delaware’s 11th annual Nobel Symposium on Oct. 25, faculty experts helped supply that context by describing the work of the 2017 laureates and explaining its significance.

The public event, held in Harker Interdisciplinary Science and Engineering Laboratory, consisted of short talks by six UD faculty members who conduct research and scholarship in areas closely connected to those that won this year’s Nobel Prizes. Each talk was followed by the opportunity for audience members to ask questions.

Sponsored by the College of Arts and Sciences, the symposium gives interested members of the University community and the public more in-depth information about the laureates’ work than is typically found in general news stories about the prizes. 

Following are the 2017 prizes highlighted at the symposium.


Alex McKee, assistant professor of English, discussed the Nobel Prize in Literature, which was awarded this year to the English author Kazuo Ishiguro, who, the Nobel committee said, "in novels of great emotional force, has uncovered the abyss beneath our illusory sense of connection with the world."

Although the prize was awarded specifically for Ishiguro’s work as a novelist, McKee noted that he has also written short stories, screenplays for film and television and even song lyrics and “has experimented widely with genres” including detective fiction, fantasy and science fiction.

Ishiguro, who was born in Japan but moved with his family at age 5 to England and has continued to live there, once described himself as “a homeless writer,” McKee said. He told the audience that Ishiguro’s lack of connection to his original culture (for decades, he didn’t visit Japan and doesn’t speak the language) and his sense of being an outsider in England can be seen in the themes of his novels.

“His first novel in 1982 explores memory and displacement … [and] he continues those themes in later work,” McKee said.

That exploration of how individuals rely on memory as a way to cope with displacement is also evident in Ishiguro’s best-known novel, The Remains of the Day, he said.

Physiology or Medicine

Michael Moore, professor of biological sciences, spoke about the 2017 Nobel Prize in Physiology or Medicine, awarded to Jeffrey C. Hall, Michael Rosbash and Michael W. Young for what the committee said were "their discoveries of molecular mechanisms controlling the circadian rhythm."

Moore, who has conducted research himself in the field of clock biology, began by describing a person waking up at 1 a.m. to make a flight. Despite having gone to bed very early and sleeping an almost adequate number of hours, he still feels terrible.

“Why is this so hard?” Moore asked. “It’s hard because your body has a clock, and your body knows what time it is.”

Your body, he said, begins preparing for activity a couple of hours before your normal waking time—raising your blood sugar, body temperature, hormone levels and metabolism, for example—but at 1 a.m., it hasn’t yet started those preparations. The effects can be seen in situations such as jet lag and shift work.

This year’s Nobel winners studied fruit flies and discovered that the internal clock, which has been set by the day-night rotation of the Earth, is in the genes of organisms. They isolated a gene that controls the daily bodily rhythm by encoding a protein, and then identified other protein components that also regulate the clock.

“This is a fundamental discovery—what this clock is and how it works,” Moore said. “Almost every function in your body is tied into this clock, and there are a lot of health implications” for numerous conditions including depression, diabetes and cancer.


Jeremy Tobacman, assistant professor of economics, explained the work done by Richard H. Thaler, who will receive the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel “for his contributions to behavioral economics.”

Economists had long assumed that people made economic decisions in a rational way, Tobacman said, calling these hypothetical, rational agents “econs.”

Then, he said, “Enter Thaler, with a commitment to understanding humans, not just econs.” Thaler incorporated behavioral psychology to explore how people actually act in terms of accepting risk, having or lacking will power and other types of decision making.

His work examined how most people view the concept of fairness and how they simplify financial decision making by focusing narrowly on individual decisions rather than overall, big-picture consequences. His book Nudge shows how people can be influenced to save for retirement, for example, by automatically enrolling them in a savings plan with the choice of opting out, rather than requiring them to opt in.

Tobacman cited Nudge as an example of Thaler’s skills in communicating with the public. In addition, he said, his work on individual decision making has broader implications for financial markets.


In September 2015, a collaborative project known as LIGO enabled scientists to detect the universe’s gravitational waves—predicted by Albert Einstein a century ago—for the first time.

That observation by the Laser Interferometer Gravitational-Wave Observatory was described by Veronique Petit, assistant professor of physics and astronomy, as she discussed the Nobel Prize in Physics. The prize was awarded to Rainer Weiss, Barry C. Barish and Kip S. Thorne for their “decisive contributions to the LIGO detector," according to the award announcement.

Petit explained the gravitational waves occurred from the collision of two black holes and spread through the universe at the speed of light. The waves arrived at LIGO’s two sites, in Washington state and Louisiana, “just a few days after switching the thing on,” Petit said.

With the final proof that binary black holes exist and can merge, “It opens a new field of research that is very exciting for us,” she said. Gravitational waves provide scientists with a new way of observing and learning more about events in space.

The Nobel committee noted that although LIGO is a long-term project that has involved over 1,000 scientists from more than 20 countries, the three laureates’ “enthusiasm and determination … ensured that four decades of effort led to gravitational waves finally being observed.”


Matthew Weinert, associate professor of political science and international relations, spoke about the Nobel Peace Prize, awarded to the International Campaign to Abolish Nuclear Weapons (ICAN).

ICAN is a coalition of non-governmental organizations from some 100 different countries around the globe. The Norwegian Nobel Committee recognized the group for its "work to draw attention to the catastrophic humanitarian consequences of any use of nuclear weapons and for its ground-breaking efforts to achieve a treaty-based prohibition of such weapons."

Previous international agreements have banned landmines, cluster munitions and biological and chemical weapons, Weinert said, but the nine nations that hold nuclear weapons have never agreed to give them up.

“The dilemma facing ICAN was: How do you eliminate a weapon that some value so deeply?” he said. The strategy the organization used has been to “reframe [the issue] in humanitarian terms,” Weinert said, making the argument that when nuclear weapons are used, there is no way to avoid causing catastrophic harm to civilians.

ICAN’s work has been successful in stigmatizing nuclear weapons, Weinert said. More than 125 nations have formally endorsed a commitment, called the Humanitarian Pledge, to prohibit and eliminate such weapons.


Juan Perilla, assistant professor of chemistry and biochemistry, described the work done by Jacques Dubochet, Joachim Frank and Richard Henderson in developing cryo-electron microscopy, a technique that Perilla uses in his own lab.

Dubochet, Frank and Henderson won this year’s Nobel Prize in Chemistry for the technology, which allows researchers to generate three-dimensional images of the molecules of life.

The method, which improves the way biomolecules can be imaged, has moved biochemistry into a new era, according to the Nobel organization. With the technique, researchers can freeze molecules and see processes that were never before available visually.

In his talk, Perilla showed images generated through cryo-electron microscopy, including 3-dimensional views of structures such as the HIV capsid, described as a “protein cage” that carries the virus into the nucleus of a cell. Perilla has published findings from two years of work in which a supercomputer simulated the capsid, providing insights into how it travels in the human body.

Cryo-electron microscopy creates “high-resolution models,” Perilla said. “We can not only build small models, but we can go beyond what was possible before.”

Article by Ann Manser, with information from the Nobel Prize organization; for more, visit the website. Photo by Wenbo Fan.

News Story Supporting Images and Text
Used in the Home Page News Listing and for the News Rollup Page

​UD faculty experts spoke at the 2017 Nobel Symposium, explaining the significance of the work done by this year's prize winners.

Page Settings and MetaData:
(Not Shown on the Page)
Page Settings
nobel symposium 2017 speakers
MetaData for Search Engine Optimization
Explaining the Nobels
  • Chemistry and Biochemistry
  • 102 Brown Laboratory
  • University of Delaware
  • Newark, DE 19716, USA
  • Phone: 302-831-1247
  • Undergraduate Program Inquiries 302-831-2465